Asymptotic profile for a two-terms time fractional diffusion problem

نویسندگان

چکیده

Abstract We consider the Cauchy-type problem associated to time fractional partial differential equation: $$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u+\partial _t^{\beta }u-\varDelta u=g(t,x), &{} t>0, \ x\in {\mathbb {R}}^n \\ u(0,x)=u_0(x), \end{array}\right. } \end{aligned}$$ ∂ t u + β - Δ = g ( , x ) > 0 ∈ R n with $$\beta \in (0,1)$$ 1 , where derivative $$\partial }$$ is in Caputo sense. provide a sufficient condition on right-hand term g ( t x ) obtain solution $${\mathcal {C}}_b([0,\infty ),H^s)$$ C b [ ∞ H s . exploit dissipative-smoothing effect which allows describe asymptotic profile of low space dimension.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal results for a time-fractional inverse diffusion problem under the Hölder type source condition

‎In the present paper we consider a time-fractional inverse diffusion problem‎, ‎where data is given at $x=1$ and the solution is required in the interval $0

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

optimal results for a time-fractional inverse diffusion problem under the hölder type source condition

‎in the present paper we consider a time-fractional inverse diffusion problem‎, ‎where data is given at $x=1$ and the solution is required in the interval $0

متن کامل

Fractional diffusion with two time scales

Moving particles that rest along their trajectory lead to time-fractional diffusion equations for the scaling limit distributions. For power law waiting times with infinite mean, the equation contains a fractional time derivative of order between 0 and 1. For finite mean waiting times, the most revealing approach is to employ two time scales, one for the mean and another for deviations from the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2022

ISSN: ['1311-0454', '1314-2224']

DOI: https://doi.org/10.1007/s13540-022-00041-3